Magneto-electro-optically Coupled Hybrid Metamaterial Thin Film Platform for Photonic Integrated Circuits

Project Personnel

Haiyan Wang

Principal Investigator

Purdue University

Minghao Qi

Co-PI

Purdue University

R Edwin Garcia

Co-PI

Purdue University

Peter Bermel

Co-PI

Purdue University System

Funding Divisions

Office of Multidisciplinary Activities (OMA), Electrical, Communications and Cyber Systems (ECCS), Technology, Innovation and Partnerships (TIP), Division Of Materials Research (DMR)

Unlike electronic circuits, photonic integrated circuits (PICs) use photons (small, discrete packets of light), rather than electrons, to transmit and process information. While photons provide higher transmission speeds and information capacity, achieving directed signal transmission, optical isolation, and switching remain critical challenges with current weakly-nonlinear materials. Despite silicon providing an established platform for low-cost, high-volume manufacturing, integrating many dissimilar materials on top poses significant processing and materials compatibility challenges. This Designing Materials to Revolutionize and Engineer our Future (DMREF) award supports research to develop a class of novel hybrid materials (consisting of two constituents at the nanoscale), which will ultimately form several key building blocks for universal, large-scale PICs. These new hybrid materials provide tailorable optical properties, well-coupled functionalities, easy integration at the device level, and compatibility with semiconductor manufacturing. The scope of the work provides the foundation for a PIC platform that can be manufactured at scale, actualizing the benefits of photon-based circuits, which include: higher speed, lower temperature sensitivity, large integration capacity, and lower costs and carbon footprint, compared to typical integrated circuit (IC) devices. These advances will provide vital new capabilities in telecommunications, healthcare, sensing, etc., to address critical needs in the Creating Helpful Incentives to Produce Semiconductors (CHIPS) and Science Act through highly efficient device concepts and manufacturing approaches. Furthermore, the research findings will be incorporated into student research training at both graduate and undergraduate levels and education modules for a co-developed course and summer research programs for high school teachers and students.

Publications

Influence of rare earth (RE) mixing in REBa2Cu3O7x thin films, including RE2O3 nanoparticle formation, on in-field critical current density at 20K
M. H. Lai, I. Kim, J. P. Feighan, T. Bedford, J. Shen, M. T. Moceri, J. Huang, X. T. Nguyen, G. Di Martino, H. Wang, S. H. Moon, A. Kursumovic, and J. L. MacManus-Driscoll
9/1/2025
CeO2 Nanostructures Prepared by Selective Water‐Soluble Sr3Al2O6(SAO)‐CeO2 Vertically Aligned Nanocomposite
B. Kunhung Tsai, J. Huang, J. Shen, Y. Zhang, J. P. Barnard, C. A. Mihalko, A. Choudhury, S. Zhou, and H. Wang
7/26/2025
Room temperature ferroelectricity and self-biased magnetoelectricity in SmFeO3 nanocomposite by 3D strain engineering
M. Bansal, L. Keeney, A. Choudhury, J. Huang, H. Wang, J. L. MacManus-Driscoll, and T. Maity
7/22/2025
Engineered high endurance in WO 3 -based resistive switching devices via a guided filament approach
Z. Yuan, B. Bakhit, Y. Liu, Z. Sun, G. I. Lampronti, X. Li, S. M. Fairclough, B. K. Tsai, A. Choudhury, C. Ducati, H. Wang, M. Hellenbrand, and J. L. MacManus-Driscoll
5/16/2025
Enhanced non-volatile resistive switching performance through ion-assisted magnetron sputtering of TiN bottom electrodes
B. Bakhit, M. Hellenbrand, B. K. Tsai, A. Choudhury, P. Polcik, S. Kolozsvari, H. Wang, A. J. Flewitt, and J. L. MacManus-Driscoll
4/18/2025
Complex Oxide‐metal Hybrid Metamaterials with Integrated Magnetic and Plasmonic Non‐noble Metal Nanostructures
J. Huang, B. Zhang, D. Hermawan, A. Sanjuan, B. K. Tsai, J. Huang, R. E. Garcı́a, and H. Wang
3/10/2025
Vernier microcombs for integrated optical atomic clocks
K. Wu, N. P. O’Malley, S. Fatema, C. Wang, M. Girardi, M. S. Alshaykh, Z. Ye, D. E. Leaird, M. Qi, V. Torres-Company, and A. M. Weiner
2/19/2025
Freestanding BaTiO3‐Au Vertically Aligned Nanocomposite toward Flexible Multi‐Sensing Platform
B. K. Tsai, J. Huang, Y. Yu, M. H. Lee, B. T. Stegman, E. J. Flores, P. Z. Tong, K. Xu, S. Zhou, J. Shen, J. Song, Y. Zhang, L. Stanciu, W. Wu, H. Wang, et al.
1/23/2025
Integrating magnetic Co-nanopillars in a NbN-based VAN thin film as a multifunctional hybrid metamaterial
Y. Zhang, Z. Hu, A. Dion Neal, C. A. Mihalko, L. Quigley, P. Lu, W. Pan, D. Paul, B. Kunhung Tsai, S. Zhou, J. Shen, X. Zhang, and H. Wang
1/1/2025
Transfer of Millimeter‐Scale Strained Multiferroic Epitaxial Thin Films on Rigid Substrates via an Epoxy Method Producing Magnetic Property Enhancement
J. P. Barnard, Y. Zhang, L. Quigley, J. Shen, B. K. Tsai, M. R. Chhabra, J. Noh, H. Jung, O. Mitrofanov, R. Sarma, A. Siddiqui, I. Brener, C. F. Doiron, and H. Wang
12/9/2024
Epitaxial Thin Film Growth on Recycled SrTiO3 Substrates Toward Sustainable Processing of Complex Oxides
J. Shen, L. Quigley, J. P. Barnard, P. Lu, B. K. Tsai, D. Zemlyanov, Y. Zhang, X. Sheng, J. Gan, M. Moceri, Z. Hu, J. Huang, C. Shen, J. Deitz, H. Wang, et al.
10/28/2024
Ultrathin Ternary FeCoNi Alloy Nanoarrays in BaTiO3 Matrix for Room-Temperature Multiferroic and Hyperbolic Metamaterial
J. Huang, L. Li, Z. Hu, B. K. Tsai, J. Huang, J. Shen, Y. Zhang, J. P. Barnard, J. Song, and H. Wang
8/7/2024
Self-Assembled TiN-Metal Nanocomposites Integrated on Flexible Mica Substrates towards Flexible Devices
J. Liu, Y. Zhang, H. Dou, B. K. Tsai, A. Choudhury, and H. Wang
7/26/2024
Large Area Transfer of Bismuth‐Based Layered Oxide Thin Films Using a Flexible Polymer Transfer Method
J. P. Barnard, J. Shen, B. K. Tsai, Y. Zhang, M. R. Chhabra, K. Xu, X. Zhang, R. Sarma, A. Siddiqui, and H. Wang
6/30/2024
Au nanopillar array prepared by selective etching of Au-Sr3Al2O6 vertically aligned nanocomposite thin films
B. K. Tsai, J. Song, J. Liu, J. Shen, Y. Zhang, X. Zhang, and H. Wang
1/1/2024

View All Publications

Designing Materials to Revolutionize and Engineer our Future (DMREF)