Uncovering Mechanisms of Grain Boundary Migration in Polycrystals for Predictive Simulations of Grain Growth

Project Personnel

Gregory Rohrer

Principal Investigator

Carnegie Mellon University


Elizabeth Holm

Carnegie Mellon University


Amanda Krause

University of Florida


Kaushik Dayal

Carnegie Mellon University


Funding Divisions

Division of Materials Research (DMR)

Most solid materials, including metals, ceramics, and even some polymers, have an internal network of grain boundaries that separate individual crystals. This grain boundary network strongly influences materials properties and, therefore, is important for the design of automobiles, aircraft, computers, and many other devices. The goal of this research is to develop accurate predictive simulations for the evolution of the grain boundary network in metals and ceramics. These simulations will accelerate the incorporation of polycrystalline components into devices and structures by defining processing conditions to achieve specific microstructures and properties. The project will rely on iterative feedback between experimental observations of grain growth, new theories for grain boundary migration, and computer simulations of the evolution of the grain boundary network. In this way, it is aligned with the Materials Genome Initiative.


Grain boundary migration in polycrystalline α-Fe
Z. Xu, Y. Shen, S. K. Naghibzadeh, X. Peng, V. Muralikrishnan, S. Maddali, D. Menasche, A. R. Krause, K. Dayal, R. M. Suter, and G. S. Rohrer
Grain Boundary Migration in Polycrystals
G. S. Rohrer, I. Chesser, A. R. Krause, S. K. Naghibzadeh, Z. Xu, K. Dayal, and E. A. Holm
Extreme Abnormal Grain Growth: Connecting Mechanisms to Microstructural Outcomes
C. E. Krill, E. A. Holm, J. M. Dake, R. Cohn, K. Holíková, and F. Andorfer
Energy dissipation by grain boundary replacement during grain growth
Z. Xu, C. M. Hefferan, S. F. Li, J. Lind, R. M. Suter, F. Abdeljawad, and G. S. Rohrer
Parallel simulation via SPPARKS of on-lattice kinetic and Metropolis Monte Carlo models for materials processing
J. A. Mitchell, F. Abdeljawad, C. Battaile, C. Garcia-Cardona, E. A. Holm, E. R. Homer, J. Madison, T. M. Rodgers, A. P. Thompson, V. Tikare, E. Webb, and S. J. Plimpton
Relative grain boundary energies from triple junction geometry: Limitations to assuming the Herring condition in nanocrystalline thin films
M. J. Patrick, G. S. Rohrer, O. Chirayutthanasak, S. Ratanaphan, E. R. Homer, G. L. Hart, Y. Epshteyn, and K. Barmak
Observations of unexpected grain boundary migration in SrTiO3
V. Muralikrishnan, H. Liu, L. Yang, B. Conry, C. J. Marvel, M. P. Harmer, G. S. Rohrer, M. R. Tonks, R. M. Suter, C. E. Krill, and A. R. Krause
Comparison of simulated and measured grain volume changes during grain growth
X. Peng, A. Bhattacharya, S. K. Naghibzadeh, D. Kinderlehrer, R. Suter, K. Dayal, and G. S. Rohrer
Statistical behaviour of interfaces subjected to curvature flow and torque effects applied to microstructural evolutions
S. Florez, K. Alvarado, B. Murgas, N. Bozzolo, D. Chatain, C. E. Krill, M. Wang, G. S. Rohrer, and M. Bernacki

View All Publications

Research Highlights

Broader Impact Through the 3D Microstructure Workshop
Gregory S. Rohrer, Carnegie Mellon University
Data Flow Between Experiment, Continuum Models, and Atomistic Models
Gregory S. Rohrer, Carnegie Mellon University
A New View of Grain Boundary Migration in Polycrystals
G. Rohrer, K. Dayal (Carnegie Mellon University) A. Krause (University of Florida)

Designing Materials to Revolutionize and Engineer our Future (DMREF)