GOALI: Accelerating Discovery of High Entropy Silicates for Extreme Environments
This research will accelerate new understanding of the interplay of cation complexity on phase stability of high entropy rare earth silicates in extreme environments. The computation-experiment-feedback loop coupled with machine learning and high throughput computation will result in heretofore unrealized linkages of entropy-induced material stability, thermal properties, and corrosion resistance. The project will result in advances in fundamental understanding and discovery of novel materials that can be designed for specific extreme environment applications. The computational approach to materials discovery will utilize AFLOW: high throughput property prediction. These predictions will be tested by characterizing rare earth silicates synthesized via solid state sintering, chemical techniques for improved cation mixing, and gas phase pulsed laser deposition of thin films. Phase stability and chemical disorder will be characterized through use of techniques including X-ray diffraction and transmission electron microscopy. Resulting stability of rare earth silicate mixtures will inform improvements in the computational approach for materials discovery. Additionally, computational approaches will be used to predict phonon transport and thermal properties. These predicted thermal properties will be compared against thermal conductivity measurements as a function of temperature through use of time domain and steady state thermoreflectance, and hot disk techniques. Environmental stability will be experimentally characterized using "steam-jet" testing, an extreme environment laboratory test creating high-temperature, high-velocity, reactive steam representative of the combustion environment. Results from both the thermal and environmental testing will be used to validate and advance the computational approaches and property-based materials discovery.
Publications
Phase purity and evolution in sol–gel derived single component and multicomponent rare‐earth disilicates
A. Salanova, E. J. Opila, and J. F. Ihlefeld
1/9/2024
Design rules for the thermal and elastic properties of rare-earth disilicates
C. Toher, M. J. Ridley, K. Q. Tomko, D. H. Olson, S. Curtarolo, P. E. Hopkins, and E. J. Opila
5/1/2023
Phase stability and tensorial thermal expansion properties of single to high‐entropy rare‐earth disilicates
A. Salanova, I. A. Brummel, A. A. Yakovenko, E. J. Opila, and J. F. Ihlefeld
1/21/2023
Tailoring thermal and chemical properties of a multi-component environmental barrier coating candidate (Sc0.2Nd0.2Er0.2Yb0.2Lu0.2)2Si2O7
M. J. Ridley, K. Q. Tomko, J. A. Tomko, E. R. Hoglund, J. M. Howe, P. E. Hopkins, and E. J. Opila
12/1/2022
Observation of solid-state bidirectional thermal conductivity switching in antiferroelectric lead zirconate (PbZrO3)
K. Aryana, J. A. Tomko, R. Gao, E. R. Hoglund, T. Mimura, S. Makarem, A. Salanova, M. S. B. Hoque, T. W. Pfeifer, D. H. Olson, J. L. Braun, J. Nag, J. C. Read, J. M. Howe, E. J. Opila, L. W. Martin, J. F. Ihlefeld, and P. E. Hopkins
3/23/2022
Detection of sub-micrometer thermomechanical and thermochemical failure mechanisms in titanium with a laser-based thermoreflectance technique
K. Quiambao-Tomko, R. R. White, J. A. Tomko, C. M. Rost, L. Backman, E. J. Opila, and P. E. Hopkins
2/2/2022
Quantitative evaluation of (0001) sapphire recession in high-temperature high-velocity steamjet exposures
M. J. Ridley, and E. J. Opila
2/1/2022
Variable thermochemical stability of RE2Si2O7 (RE = Sc, Nd, Er, Yb, or Lu) in high‐temperature high‐velocity steam
M. Ridley, and E. Opila
9/30/2021
Evolution of microstructure and thermal conductivity of multifunctional environmental barrier coating systems
D. H. Olson, J. A. Deijkers, K. Quiambao-Tomko, J. T. Gaskins, B. T. Richards, E. J. Opila, P. E. Hopkins, and H. N. G. Wadley
3/1/2021
Tailoring thermal properties of multi-component rare earth monosilicates
M. Ridley, J. Gaskins, P. Hopkins, and E. Opila
8/1/2020
The thermal and mechanical properties of hafnium orthosilicate: Experiments and first-principles calculations
Z. Ding, M. Ridley, J. Deijkers, N. Liu, M. S. B. Hoque, J. Gaskins, M. Zebarjadi, P. E. Hopkins, H. Wadley, E. Opila, and K. Esfarjani
8/1/2020
Anisotropic thermal conductivity tensor of β-Y2Si2O7 for orientational control of heat flow on micrometer scales
D. H. Olson, V. A. Avincola, C. G. Parker, J. L. Braun, J. T. Gaskins, J. A. Tomko, E. J. Opila, and P. E. Hopkins
5/1/2020
Local thermal conductivity measurements to determine the fraction of α-cristobalite in thermally grown oxides for aerospace applications
D. H. Olson, J. T. Gaskins, J. A. Tomko, E. J. Opila, R. A. Golden, G. J. K. Harrington, A. L. Chamberlain, and P. E. Hopkins
3/1/2020
Hafnium nitride films for thermoreflectance transducers at high temperatures: Potential based on heating from laser absorption
C. M. Rost, J. Braun, K. Ferri, L. Backman, A. Giri, E. J. Opila, J. Maria, and P. E. Hopkins
10/9/2017
View All Publications
Research Highlights
Transient Phase Formation within Rare-Earth Disilicates
Elizabeth Opila, University of Virginia
6/5/2024
Melting temperature of silicate T/EBCs
Elizabeth Opila, University of Virginia
6/5/2024
Design rules for the thermal and elastic properties of rare-earth disilicates
Elizabeth Opila – University of Virginia
6/5/2024