Skip to main content

Data-driven Recovery of Complex Fluid’s Parameters from Constructive Models

Feb 2, 2026

Rheology-informed neural networks (RhINNs) have recently been popularized as data-driven platforms for solving rheologically relevant differential equations. While RhINNs can be employed to solve different constitutive equations of interest in a forward or inverse manner, their ability to do so strictly depends on the type of data and the choice of models embedded within their structure. Here, the applicability of RhINNs in general, and the interplay between the choice of models, parameters of the neural network itself, and the type of data at hand are studied. To do so, a RhINN is informed by a series of thixotropic elasto-visco-plastic (TEVP) constitutive models, and its ability to accurately recover model parameters from stress growth and oscillatory shear flow protocols is investigated. It was observed that by simplifying the constitutive model, RhINN convergence is improved in terms of parameter recovery accuracy and computation speed while over-simplifying the model is detrimental to accuracy. Moreover, several hyperparameters, e.g., the learning rate, activation function, initial conditions for the fitting parameters, and error heuristics, should be at the top of the checklist when aiming to improve parameter recovery using RhINNs.

Publication

Authors

Safa Jamali (Northeastern University)

Additional Materials

NSF Logo

Any opinions, findings, and conclusions or recommendations expressed on this website are those of the participants and do not necessarily reflect the views of the National Science Foundation or the participating institutions. This site is maintained collaboratively by principal investigators with Designing Materials to Revolutionize and Engineer our Future awards, independent of the NSF.

DMREF Logo